The radius of a spherical balloon is increasing at a rate of 4 centimeters per minute. How fast is the volume changing when the radius is 14 centimeters?

Note: The volume of a sphere is given by V=(4/3)\pi r^3.

Rate of change of volume =

Respuesta :

Answer:

The rate of change in volume is [tex]3136 \ \pi \ cm^3/min[/tex].

Step-by-step explanation:

Given:

radius [tex]r= 14\ cm[/tex]

[tex]\frac{d}{dt}r=4 \ cm/min[/tex]

We need to find the rate of change of Volume [tex]\frac{d}{dt}(V)[/tex]

Solution:

Now We can say that:

Volume of sphere is given by:

[tex]V=\frac43 \pi r^3[/tex]

Now taking derivative on both side we get;

[tex]\frac{d}{dt}(V)=\frac{d}{dt}\frac43 \pi r^3[/tex]

[tex]\frac{d}{dt}(V)=\frac43 \pi\times 3\times r^2\frac{d}{dt} r\\\\\frac{d}{dt}(V)=4\pi\times r^2\frac{d}{dt} r[/tex]

But  [tex]r= 14\ cm[/tex] and [tex]\frac{d}{dt}r=4 \ cm/min[/tex] so we get;

[tex]\frac{d}{dt}(V)=4\pi\times 14^2 \times 4[/tex]

[tex]\frac{d}{dt}(V)=3136 \ \pi \ cm^3/min[/tex]

Rate of change of volume = [tex]3136 \ \pi \ cm^3/min[/tex]

Hence the rate of change in volume is [tex]3136 \ \pi \ cm^3/min[/tex].

Applying implicit differentiation, it is found that the volume is changing at a rate of 9852 cubic centimetres per minute.

The volume of a sphere of radius r is given by:

[tex]V = \frac{4\pi r^3}{3}[/tex]

Applying implicit differentiation, the rate of change is given by:

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]

We are given that:

[tex]\frac{dr}{dt} = 4, r = 14[/tex]

Then

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]

[tex]\frac{dV}{dt} = 4\pi 14^2(4)[/tex]

[tex]\frac{dV}{dt} = 9852[/tex]

The volume is changing at a rate of 9852 cubic centimetres per minute.

A similar problem is given at https://brainly.com/question/24158553