Suppose you want to determine the average height of college basketball players in NCAA Division I. In a random sample of 10 players, the sample average is 72.075 inches with a standard deviation of 4.8507 inches. What is the 95% confidence interval for the average height of all NCAA D-I players

Respuesta :

Answer:

95% confidence interval for the average height of all NCAA D-I players is [68.61 , 75.54].

Step-by-step explanation:

We are given that in a random sample of 10 players, the sample average is 72.075 inches with a standard deviation of 4.8507 inches.

So, the pivotal quantity for 95% confidence interval for the average height is given by;

           P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample average height = 72.075 inches

             s = sample standard deviation = 4.8507 inches

             n = sample of players = 10

             [tex]\mu[/tex] = population mean height

So, 95% confidence interval for the population mean height, [tex]\mu[/tex] is ;

P(-2.262 < [tex]t_9[/tex] < 2.262) = 0.95

P(-2.262 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.262) = 0.95

P( [tex]-2.262 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]2.262 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.95

P( [tex]\bar X - 2.262 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X + 2.262 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X - 2.262 \times {\frac{s}{\sqrt{n} }[/tex] ,  [tex]\bar X + 2.262 \times {\frac{s}{\sqrt{n} }[/tex] ]

                                               = [ [tex]72.075 - 2.262 \times {\frac{4.8507}{\sqrt{10} }[/tex] , [tex]72.075 + 2.262 \times {\frac{4.8507}{\sqrt{10} }[/tex] ]

                                                = [68.61 , 75.54]

Therefore, 95% confidence interval for the average height of all NCAA D-I players is [68.61 , 75.54].