Respuesta :
Answer:
Account balance after 15 years is $627,964
Explanation:
Detailed step-wise solution is given in the images attached.


Answer:
a ) 32.84
b) future value after 15 ears and additional contribution of 3,000 dolalr each
627.964,26‬
Explanation:
Given the formula for an annuity we have to solve for time (n)
[tex]C \times \frac{(1+r)^{time} -1 }{rate} = PV\\[/tex]
C Â $1,000.00
time n
rate 0.025
PV $50,000.0000
[tex]1000 \times \frac{(1+0.025)^{n} -1}{0.025} = 50000\\[/tex]
[tex](1+0.025)^{n}= 1 + \frac{50000\times0.025}{1000}[/tex]
[tex](1+0.025)^{n}= 2.25[/tex]
We now solve using logarithmic properties:
[tex]-n= \frac{log 2.25}{log(1.025)[/tex]
n = Â 32.84 Â
b)
Value of the 50,000 dollars
[tex]Principal \: (1+ r)^{time} = Amount[/tex]
Principal 50,000.00
time 60.00 (15 years x 4 quarter per year)
rate 0.02500
[tex]50000 \: (1+ 0.025)^{60} = Amount[/tex]
Amount 219,989.49
Value of the additional contributions:
[tex]C \times \frac{(1+r)^{time} -1}{rate} = FV\\[/tex]
C 3,000.00
time 60
rate 0.025
[tex]3000 \times \frac{(1+0.025)^{60} -1 }{0.025} = FV\\[/tex]
FV $407,974.7699
Total:
219,989.49  +  407,974.7699  = 627.964,26‬