What is the equation for the circle with the center (11,6) and passes through the point (17,12)

A)(x-11)^2+(y+6)^2=36
B)(x-11)^2+(y-6)^2=36
C)(x+6)^2+(y-6)^2=72
D)(x-11)^2+(y-6)^2=72

Respuesta :

Answer:

The answer to your question is the letter D. (x - 11)² + (y - 6)² = 72

Step-by-step explanation:

Data

Equation = ?

Center = (11, 6)

Point = (17, 12)

Process

1.- Calculate the length of the radius using the distance between two points formula.

d = [tex]\sqrt{(x2 - x1)^{2}+ (y2 - y1)^{2}}[/tex]

x1 = 11    y1 = 6

x2 = 17  y2 = 12

-Substitution

d = [tex]\sqrt{(17 - 11)^{2}+ (12 - 6)^{2}}[/tex]

d = [tex]\sqrt{6^{2} + 6^{2}}[/tex]

d = [tex]\sqrt{36 + 36}[/tex]

d = [tex]\sqrt{72}[/tex]

radius = [tex]\sqrt{72}[/tex]

2.- Write the equation of the formula

    (x - 11)² + (y - 6)² = ([tex]\sqrt{72}[/tex])²

Result

   (x - 11)² + (y - 6)² = 72

Answer: D) (x − 11)2 + (y − 6)2 = 72

Step-by-step explanation:

Got this right on USA test prep