Respuesta :
Answer:
Exit velocity = 498.3m/s
Explanation:
The energy balance for the system is given by:
Ein - Eout = â—‡Esystem
Ein = Eout
Therefore
m' (h1 + V1^2/2) = m' (h2 + V2^2/2)
h1 + V1^2/2 = h2 + V2^2/2
The exit velocity will be:
V2 = [V1^2 + 2(h1 - h2)^0.5 = [V1^2 + 2(cp(T1 - T2)]^0.5
But cp = 1.007kJ/kg
V2 = [(357)^2 + 2(1.007)(90-30)(1000m^2/s^2)]^0.5
V2 = [127449 + 120840]^0.5
V2 = [248289]^0.5
V2 = 498.3m/s
Answer:
81.29 m/s
Explanation:
Given:
60°C = 333 K is cp = 1.007 kJ/kg·K.
at air inlet:
Pressure [tex]P_{1}[/tex]= 100 kPa
Temperature [tex]T_{1}[/tex]= 30°C
Velocity [tex]V_{1}[/tex]= 357 m/s
at air outlet:
Pressure [tex]P_{2}[/tex]= 200kPa
Temperature [tex]T_{2}[/tex] = 90°C
We can define the energy balance as:
[tex]E _{in}[/tex] - [tex]E_{out}[/tex]=  Δ[tex]E_{system}[/tex] = 0
therefore, Â Â Â [tex]E _{in}[/tex] Â = Â [tex]E_{out}[/tex]
m[tex]h_{1}[/tex] + m[tex]\frac{V_{1}^{2} }{2}[/tex] =m[tex]h_{2}[/tex] + [tex]\frac{V_{2}^{2} }{2}[/tex] Â (taking m common and cancelling it)
4[tex]h_{1}[/tex] + [tex]\frac{V_{1}^{2} }{2}[/tex] = Â [tex]h_{2}[/tex] Â + Â [tex]\frac{V_{2}^{2} }{2}[/tex]
The velocity at the exit of a diffuser:
[tex]V_{2}[/tex] = [ [tex]V_{1}^{2}[/tex] + 2 [tex]c_p{}[/tex] ([tex]T_{1}[/tex] - [tex]T_{2}[/tex]) [tex]]^{0.5}[/tex]
[tex]V_{2}[/tex]= [ [tex]357^{2}[/tex] +  2  x  1000  x  1.007  x  (30-90) [tex]]^{0.5}[/tex]
[tex]V_{2}[/tex]= 81.29 m/s
therefore, the velocity at the exit of a diffuser is 81.29 m/s