From consecutive aerial photos of traffic along a highway, one observes that there are ten cars per kilometer with 0 velocity (they are parked), forty cars per kilometer traveling at 15 km/hr and twenty cars per kilometer traveling at 30 km/hr. Determine the space mean speed of traffic and the time mean speed

Respuesta :

Answer:

The space mean speed is  [tex]V_s = \ 18Km/hr[/tex]

The Time mean speed  is    [tex]V_t= 20 km/hr[/tex]

Explanation:

    From the question we can derive that

             Velocity (Km / h)(V)    0([tex]V_1[/tex])            15([tex]V_2[/tex])         30([tex]V_3[/tex])

                 No of Cars(N)        10([tex]N_1[/tex])           40 ([tex]N_2[/tex])       20([tex]N_3[/tex])

 From the table above the space mean speed would be

                                    [tex]V_s = \frac{N_2 + N_3}{\frac{N_2}{V_2} + \frac{N_3}{V_3} }[/tex]

                                    [tex]V_s = \frac{40 +20 }{\frac{40}{15} + \frac{20}{30} }[/tex]

                                   [tex]V_s = \ 18Km/hr[/tex]

  From the table above the Time mean speed would be

                                 [tex]V_t = \frac{(N_2 * V_2 ) + (N_3 * V_3 )}{N_2 +N_3}[/tex]

                                 [tex]V_t = \frac{(40* 15 )(30*20)}{40+ 20}[/tex]

                                         [tex]= 20 km/hr[/tex]

We did not make use of [tex]N_1[/tex] because the speed was zero