Respuesta :

Answer:

Required value is [tex]\frac{1250}{3}[/tex].

Step-by-step explanation:

We have to find the value of,

[tex]\int\int_{D} x^2y dA\hfill (1)[/tex]

where, [tex]D=\{(5,\theta) : 0\leq r\leq 5, 0\leq \theta \leq \pi \}[/tex]

To convert it in polar form let [tex]x=r\cos\theta, y=r\sin\theta[/tex] and substitute in (1) we get,

[tex]\int\int_{D} x^2y dA[/tex]

[tex]=\int_{0}^{\pi}\int_{0}^{5}(r\cos\theta)^2(r\sin\theta)rdrd\theta[/tex]

Assuming,

[tex]u=\cos \theta[/tex] then,

[tex]du=-\sin\theta d\theta\implies-du=\sin\thetad\theta[tex]

For [tex]\theta=0, u=1[/tex] and [tex]\theta=\pi[/tex] gives u=-1. Hence,

[tex]\int\int_{D} x^2y dA[/tex]

[tex]=\int_{0}^{\pi}\int_{0}^{5}(r\cos\theta)^2(r\sin\theta)rdrd\theta[/tex]

[tex]=\int_{1}^{-1}u^2(-du)\int_{0}^{5}r^4dr[/tex]

[tex]=\int_{-1}^{1}u^2du\int_{0}^{5}r^4dr[/tex]

[tex]=\Big[\frac{u^3}{3}\Big]_{-1}^{1}\times\Big[\frac{r^5}{5}\Big]_{0}^{5}[/tex]

[tex]=\frac{2\times 5^4}{3}=\frac{1250}{3}[/tex]

The change to polar coordinates should be done according to:

x = r×cosθ  y = r× sinθ    dA = r×dr×dθ

The solution is:

∫∫ x²×y×dA  =  5000×D⁵/ 3

∫∫ x²×y×dA      ⇒   ∫∫ [(r×cosθ)²× r×sinθ]× r×dr×dθ

∫∫ r²×cos²θ×r×sinθ× r×dr×dθ

Integration limits:

x² + y² = r²       ⇒ r²×cos²θ +  r²× sin²θ = (5D)²

r² × ( cos²θ + sin²θ ) = (5D)²

r² = (5D)²      ⇒ r = 5×D  

Then integration limits are:

0 ≤ r ≤ 5×D

∫∫ r²×cos²θ×r×sinθ× r×dr×dθ = ∫ r³ dr ×∫cos²θ×r×sinθ×dθ     ( 0 ≤ θ ≤ π )

∫ r³ dr  =  r⁴/4|₀⁵D           ⇒                     (625×D⁵) / 4

∫cos²θ×r×sinθ×dθ         we change variables   u = cosθ  du = - sinθ×dθ

- ∫ u²× du    =  - u³/3     |₁⁻¹                                when  θ = 0    cos0 = 1

                                                                         when  θ = π   cos π  = -1

- [ - 1/3 - ( 1/3)]  = - ( -2/3 ) = (2/3)

- ∫ u²× du    = 2/3

∫∫ x²×y×dA  =   (625×D⁵) / 4×(2/3)

∫∫ x²×y×dA  =  5000×D⁵/ 3

Related Link :https://brainly.com/question/12685970