X-rays with frequency 3 ⨉ 10 18 Hz shine on a crystal, producing an interference pattern. If the first bright spot is observed at an angle of 75.5°, what is the lattice spacing of this crystal?

Respuesta :

Answer:

[tex]5.1645\times 10^{-11}\ m[/tex]

Explanation:

n = Order = 1

c = Speed of light = [tex]3\times 10^8\ m/s[/tex]

f = Frequency = [tex]3\times 10^{18}\ Hz[/tex]

[tex]\theta[/tex] = Angle = [tex]75.5^{\circ}[/tex]

Lattice spacing is given by

[tex]d=\dfrac{n\lambda}{2\sin\theta}\\\Rightarrow d=\dfrac{n\times c}{f2\sin\theta}\\\Rightarrow d=\dfrac{1\times 3\times 10^{8}}{3\times 10^{18}\times 2\times \sin75.5^{\circ}}\\\Rightarrow d=5.1645\times 10^{-11}\ m[/tex]

The lattice spacing of the crystal is [tex]5.1645\times 10^{-11}\ m[/tex]