Respuesta :
Answer:
a) Joint ptobability distribution
[tex]\begin{pmatrix} &Y=0&Y=1&Y=2&Y=3&Y=4\\X=0&0.3&0.05&0.025&0.025&0.1\\ X=1&0.18&0.03&0.015&0.015&0.06 \\ X=2&0.12&0.02&0.01&0.01&0.04\end{pmatrix}[/tex]
b) P(X<= 1 and Y <= 1) = P(X<= 1) * P(Y<=1) = 0.56
c) P(X + Y = 0)=0.3
d) P(X + Y <= 1)=0.53
Step-by-step explanation:
We have to construct the joint probability table with the marginal probabilities of X and Y.
X can take values from 0 to 2, and Y can take values from 0 to 4.
We can calculate each point of the joint probability as:
[tex]P(x,y)=P_x(x)*P_y(y)[/tex]
Then, the joint probabilities are:
X=0 Y=0 Px=0.5 Px=0.6 P(0,0)=0.3
X=0 Y=1 Px=0.5 Px=0.1 P(0,1)=0.05
X=0 Y=2 Px=0.5 Px=0.05 P(0,2)=0.025
X=0 Y=3 Px=0.5 Px=0.05 P(0,3)=0.025
X=0 Y=4 Px=0.5 Px=0.2 P(0,4)=0.1
X=1 Y=0 Px=0.3 Px=0.6 P(1,0)=0.18
X=1 Y=1 Px=0.3 Px=0.1 P(1,1)=0.03
X=1 Y=2 Px=0.3 Px=0.05 P(1,2)=0.015
X=1 Y=3 Px=0.3 Px=0.05 P(1,3)=0.015
X=1 Y=4 Px=0.3 Px=0.2 P(1,4)=0.06
X=2 Y=0 Px=0.2 Px=0.6 P(2,0)=0.12
X=2 Y=1 Px=0.2 Px=0.1 P(2,1)=0.02
X=2 Y=2 Px=0.2 Px=0.05 P(2,2)=0.01
X=2 Y=3 Px=0.2 Px=0.05 P(2,3)=0.01
X=2 Y=4 Px=0.2 Px=0.2 P(2,4)=0.04
We can write it in the form of a matrix:
[tex]\begin{pmatrix} &Y=0&Y=1&Y=2&Y=3&Y=4\\X=0&0.3&0.05&0.025&0.025&0.1\\ X=1&0.18&0.03&0.015&0.015&0.06 \\ X=2&0.12&0.02&0.01&0.01&0.04\end{pmatrix}[/tex]
b) From the joint probability P(X<= 1 and Y <= 1) is equal to
[tex]P(X\leq 1 \& Y \leq 1)=P(0,0)+P(0,1)+P(1,0)+P(1,1)\\\\P(X\leq 1 \& Y \leq 1)=0.3+0.05+0.18+0.03=0.56[/tex]
We can calculate P(X<= 1) * P(Y<=1)
[tex]P_x(X\leq 1)=P_x(0)+P_x(1)=0.5+0.3=0.8\\\\P_y(Y\leq1)=P_y(0)+P_y(1)=0.6+0.1=0.7\\\\P_x(X\leq1)*P_y(Y\leq1)=0.8*0.7=0.56[/tex]
Both calculations give the same result.
c) Probability of no violations
[tex]P(X+Y=0)=P(0,0)=0.3[/tex]
d) P(X + Y <= 1)
[tex]P(X+Y \leq 1)=P(0,0)+P(0,1)+P(1,0)\\\\P(X+Y \leq 1)=0.3+0.05+0.18=0.53[/tex]