Answer:
The angular acceleration of the blades is [tex]3\ rad/s^2[/tex]. Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
Explanation:
Given that,
Initial angular velocity of the blade of fan, [tex]\omega_i=270\ rpm=28.27\ rad/s[/tex]
Final angular velocity of the blade of a fan, [tex]\omega_f=440\ rpm=46.07\ rad/s[/tex]
Time, t = 5.95 s
The angular acceleration of the blades is equal to the rate of change of its angular velocity. It is given by :
[tex]\alpha =\dfrac{\omega_f-\omega_i}{t}\\\\\alpha =\dfrac{46.07-28.27}{5.95}\\\\\alpha =2.99\ rad/s^2\\\\\alpha =3\ rad/s^2[/tex]
So, the magnitude of the angular acceleration of the blades is [tex]3\ rad/s^2[/tex].