Let Upper A equals left bracket Start 2 By 2 Matrix 1st Row 1st Column negative 2 2nd Column 4 2nd Row 1st Column 1 2nd Column 3 EndMatrix right bracketA=

−2 4
1 3
​, and Upper B equals left bracket Start 2 By 2 Matrix 1st Row 1st Column negative 2 2nd Column 1 2nd Row 1st Column 3 2nd Column 7 EndMatrix right bracketB=

−2 1
3 7
.a. Find

ABAB​,

if possible. b. Find

BABA​,

if possible.

c. Are the answers in parts a and b the ​same?

d. In​ general, for matrices A and B such that AB and BA both​ exist, does AB always equal​ BA?

a. Find

ABAB​,

Respuesta :

Answer: a) AB = [tex]\left[\begin{array}{ccc}-14&26\\-11&22\end{array}\right][/tex] ; b) [tex]\left[\begin{array}{ccc}5&-5\\13&9\end{array}\right][/tex] ; c) No, they are different; d) No, they are never the same;

Step-by-step explanation:

a) A = [tex]\left[\begin{array}{ccc}-2&4\\1&3\end{array}\right][/tex] , B = [tex]\left[\begin{array}{ccc}-2&1\\-3&7\end{array}\right][/tex]. This multiplication is possible, because matrix A has 2 columns and matrix B has 2 rows. When those value are equal, the multiplication is possible.

AB = [tex]\left[\begin{array}{ccc}-2&4\\1&3\end{array}\right][/tex] . [tex]\left[\begin{array}{ccc}-2&1\\-3&7\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}-14&26\\-11&22\end{array}\right][/tex]

b) BA = [tex]\left[\begin{array}{ccc}-2&1\\-3&7\end{array}\right][/tex] . [tex]\left[\begin{array}{ccc}-2&4\\1&3\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}5&-5\\13&9\end{array}\right][/tex]

c) As, we can see, parts a and b are differents.

d) With matrices, multiplication is not commutative, which means AB≠BA

Answer:

(a)[TeX]=\left(\begin{array}{cc}14 & 26\\7 & 22\end{array}\right) [/TeX]

(b)[Tex]\left(\begin{array}{cc}5 & -5\\1 & 33\end{array}\right) [/TeX]

(c)No

(d)AB≠BA

Step-by-step explanation:

[TeX]A= \left(\begin{array}{cc}-2 & 4\\1 & 3\end{array}\right) [/TeX]

[TeX]B= \left(\begin{array}{cc}-2 & 1\\3 & 7\end{array}\right)[/TeX]

(a)

[TeX] AB=\left(\begin{array}{cc}-2 & 4\\1 & 3\end{array}\right) \left(\begin{array}{cc}-2 & 1\\3 & 7end{array}\right)[/TeX]

[TeX]=\left(\begin{array}{cc}-2*-2+4*3 &-2*1+4*7\\1*-2+3*3 & 1*1+3*7\end{array}\right) [/TeX]

[TeX]=\left(\begin{array}{cc}14 & 26\\7 & 22\end{array}\right) [/TeX]

(b) [TeX]BA=\left(\begin{array}{cc}-2 & 1\\3&7\end{array}\right)\left(\begin{array}{cc}-2 & 4\\1 & 3\end{array}\right) [/TeX]

[TeX]=\left(\begin{array}{cc}-2*-2+1*1 & -2*4+1*3\\3*-2+7*1 &3*4+7*3\end{array}\right)=\left(\begin{array}{cc}5 & -5\\1 & 33\end{array}\right) [/TeX]

(c)No

(d)For Matrices A and B, AB≠BA.

Matrix Multiplication is not Commutative.