Step-by-step explanation:
Let the angle of elevation be [tex] \theta[/tex]
[tex] \therefore \tan \: \theta = \frac{height \: of \: mast}{height \: of \: shadow} \\ \\ \therefore \tan \: \theta = \frac{44}{14} \\ \\ \therefore \tan \: \theta = 3.14285714 \\ \\ \therefore \: \theta = {\tan}^{ - 1} (3.14285714) \\ \therefore \: \theta = 72.349875765 \degree \\ \\ \huge \red{ \boxed{\therefore \:\theta = 72.35 \degree}}[/tex]
Hence, angle of elevation of the sun is 72.35°.