Write the given differential equation in the form L(y) = g(x), where L is a linear differential operator with constant coefficients. If possible, factor L. (Used for the differential operator.) 3y'' − 8y' − 3y = 4

Respuesta :

Answer:

The complete solution is

[tex]\therefore y= Ae^{3x}+Be^{-\frac13 x}-\frac43[/tex]

Step-by-step explanation:

Given differential equation is

3y"- 8y' - 3y =4

The trial solution is

[tex]y = e^{mx}[/tex]

Differentiating with respect to x

[tex]y'= me^{mx}[/tex]

Again differentiating with respect to x

[tex]y''= m ^2 e^{mx}[/tex]

Putting the value of y, y' and y'' in left side of the differential equation

[tex]3m^2e^{mx}-8m e^{mx}- 3e^{mx}=0[/tex]

[tex]\Rightarrow 3m^2-8m-3=0[/tex]

The auxiliary equation is

[tex]3m^2-8m-3=0[/tex]

[tex]\Rightarrow 3m^2 -9m+m-3m=0[/tex]

[tex]\Rightarrow 3m(m-3)+1(m-3)=0[/tex]

[tex]\Rightarrow (3m+1)(m-3)=0[/tex]

[tex]\Rightarrow m = 3, -\frac13[/tex]

The complementary function is

[tex]y= Ae^{3x}+Be^{-\frac13 x}[/tex]

y''= D², y' = D

The given differential equation is

(3D²-8D-3D)y =4

⇒(3D+1)(D-3)y =4

Since the linear operation is

L(D) ≡ (3D+1)(D-3)    

For particular integral

[tex]y_p=\frac 1{(3D+1)(D-3)} .4[/tex]

    [tex]=4.\frac 1{(3D+1)(D-3)} .e^{0.x}[/tex]    [since [tex]e^{0.x}=1[/tex]]

   [tex]=4\frac{1}{(3.0+1)(0-3)}[/tex]      [ replace D by 0 , since L(0)≠0]

   [tex]=-\frac43[/tex]

The complete solution is

y= C.F+P.I

[tex]\therefore y= Ae^{3x}+Be^{-\frac13 x}-\frac43[/tex]