Jack and Jill are maneuvering a 3300 kg boat near a dock. Initially the boat's position is < 2, 0, 3 > m and its speed is 1.1m/s. As the boat moves to position < 4, 0, 2 > m, Jack exerts a force of < -420, 0, 210 > N, and Jill exerts a force of <180, 0, 360 > N.How much work does Jack do?WJack = JHow much work does Jill do?WJill = JWhat is the final speed of the boat?vf = m/s

Respuesta :

Answer:

The workdone by Jack is  [tex]W_{jack} = -1050J[/tex]

The workdone by Jill is  [tex]W_{Jill} = 0J[/tex]

The final velocity is  [tex]v = 1.36 m/s[/tex]

Explanation:

From the question we are given that

          The mass of the boat is [tex]m_b = 3300kg[/tex]

          The initial position of the boat is   [tex]P_i = (2 \r i + 0 \r j + 3\r k)m[/tex]

           The Final position of the boat is  [tex]P_f = (4\r i + 0 \r j + 2\r k )\ m[/tex]

           The Force exerted by Jack [tex]\r F = (-420\r i + 0 \r j + 210\r k) \ N[/tex]

             The Force exerted by Jill  [tex]\r F_{Jill} =(180 \r i + 0\r j + 360\r k)[/tex]

Now to obtain the displacement made we are to subtract the final position from the initial position

                                 [tex]\r P = P_f - P_i[/tex]

                                    [tex]= (4\r i + 0\r j + 2 \r k) - (2\r i + 0\r j + 3\r k )[/tex]

                                     [tex]= (2\r i + 0\r j -\r k )m[/tex]

Now that we have obtained the displacement we can obtain the Workdone

  which is mathematically represented as

                                                   [tex]W =\r F * \r P[/tex]

 The amount of workdone by jack would be

                                               [tex]W_{jack} =\r F * \r P[/tex]

                                                 [tex]= [(-420\r i +0\r j +210\r k)(2\r i + 0\r j - \r k)][/tex]

                                                 [tex]= (-420) (2) + (210)(-1)[/tex]

                                                [tex]= -840 - 210[/tex]

                                               [tex]=-1050J[/tex]

  The amount of workdone by Jill would be

                                                 [tex]W_{Jill} =\r F * \r P[/tex]

                                                        [tex]= [(180 \r i + 0\r j + 360\r k)(2\r i +0\r j -\r k)][/tex]

                                                       [tex]= (180 )(2) +(360)(-1)[/tex]

                                                       [tex]=0J[/tex]

According to work energy theorem the Workdone is equal to the kinetic energy of the boat

              [tex]W = K.E = \frac{1}{2} m *[v^2 - (1.1)^2][/tex]

             [tex]-1050 = 0.5*3300 [*v^2- (1.1)^2][/tex]

            [tex]-1050 = 1650 [v^2 -1.21][/tex]

               [tex]0.6363 = v^2 -1.21[/tex]

                   [tex]v^2 = 0.6363+1.21[/tex]

                    [tex]v^2 =1.846[/tex]

                    [tex]v = 1.36\ m/s[/tex]