A fireworks rocket is fired vertically upward. At its maximum height of 70.0 m , it explodes and breaks into two pieces, one with mass mA = 1.30 kg and the other with mass mB = 0.300 kg . In the explosion, 950 J of chemical energy is converted to kinetic energy of the two fragments.What is the speed of each fragment just after the explosion?

Respuesta :

Answer:

The speed of each fragment is as follows

mA = 16.55 m/s

mB = 71.73 m/s.

Explanation:

To solve the question, we note that

Maximum height of fireworks rocket = 70.0 m

mA =  1.30 kg

mB =  0.300 kg

Energy converted = 950 J

Since the available energy to be converted = 950 J

we have Kinetic energy, K.E. = 950 J

However K.E. = [tex]\frac{1}{2}\cdot m\cdot v^{2}[/tex]  and the rocket breaks into two pieces mA and mB which constitute the mass in the K.E. equation.

That is K.E. = [tex]\frac{1}{2}[/tex] ×mA×v[tex]_A[/tex]² +  

To find v[tex]_A[/tex] and v[tex]_B[/tex], we note that from the principle of conservation of linear momentum we have at the time of explosion;

mA×v[tex]_A[/tex] = mA×v[tex]_B[/tex]

1.30 kg×v[tex]_A[/tex] = 0.300 kg×v[tex]_B[/tex]

That is

v[tex]_A[/tex] = [tex]\frac{3}{13}[/tex]×v[tex]_B[/tex]

Therefore

K.E. = [tex]\frac{1}{2}[/tex] ×mA×v[tex]_A[/tex]² +  

950 J = [tex]\frac{1}{2}[/tex] ×1.3 kg×v[tex]_A[/tex]² +  

=  [tex]\frac{1}{2}[/tex] ×1.3 kg×([tex]\frac{3}{13}[/tex]×v[tex]_B[/tex])² +  

= [tex]\frac{9}{260}[/tex]×v[tex]_B[/tex]² +  [tex]\frac{3}{20}[/tex]×v

∴  v[tex]_B[/tex]² 950 J × [tex]\frac{65}{12}[/tex] =5145.83 m²/s²

v[tex]_B[/tex] = [tex]\sqrt{5145.83 m^2/s^2}[/tex] = 71.73 m/s

Therefore, since v[tex]_A[/tex] = [tex]\frac{3}{13}[/tex]×v[tex]_B[/tex]

v[tex]_A[/tex] = [tex]\frac{3}{13}[/tex] × 71.73 m/s = 16.55 m/s.