Answer:
proportion of ratios = 0.9545
so interval contain 95% ratio
Explanation:
given data
mean [tex]\mu[/tex] = 13.5
standard deviation [tex]\sigma[/tex] = 2
solution
we have given P ( 9.5 < x < 17.5 )
so proportion of ratios is
[tex]P ( \frac{9.5-\mu }{\sigma } < \frac{x-\mu }{\sigma } < \frac{17.5-\mu }{\sigma} )[/tex] ...........1
put here mean and SD value
[tex]P ( \frac{9.5-13.5 }{2 } < \frac{x-\mu }{\sigma } < \frac{17.5-13.5}{2} )[/tex]
and it will be
P ( -2 < Z < 2 )
so it is
P ( Z < 2 ) - P ( Z < -2 )
and
proportion of ratios = 1 - 2 × ( Z > 2 )
proportion of ratios = 1 - 2 × 0.0227
proportion of ratios = 0.9545
so interval contain 95% ratio