Steam at 1 atm and 100C is flowing across a 5-cm-OD tube at a velocity of 6 m/s. Estimatethe Nusselt number, the heat transfer coefficient, and the rateof heat transfer per meterlength of pipe if the pipe is at 200C.

Respuesta :

Answer:

[tex]Nu_{D} = 49.047[/tex], [tex]h = 24.621\,\frac{W}{m^{2}\cdot ^{\textdegree}C}[/tex], [tex]\dot Q \approx 381.091\,W[/tex]

Explanation:

Let assume that steam has a fully developed and turbulent flow and that tube is smooth and thin-walled. The steam is heated while flowing through the tube. The Nusselt number is given by the Dittus-Boelter equation:

[tex]Nu_{D} = 0.023\cdot Re^{0.8}\cdot Pr^{0.4}[/tex]

Properties of steam at given pressure and temperature are:

[tex]c_{p} = 2.010\,\frac{kJ}{kg\cdot ^{\textdegree}C}[/tex]

[tex]k = 0.0251\times 10^{-3}\,\frac{kW}{m\cdot ^{\textdegree}C}[/tex]

[tex]\rho = 0.5978\,\frac{kg}{m^{3}}[/tex]

[tex]\mu = 1.227\times 10^{-5}\,\frac{kg}{m\cdot s}[/tex]

The Reynolds and Prandtl numbers are, respectively:

[tex]Re = \frac{\rho\cdot v\cdot D}{\mu}[/tex]

[tex]Re = \frac{(0.5978\,\frac{kg}{m^{3}} )\cdot (6\,\frac{m}{s} )\cdot (0.05\,m)}{1.227\times 10^{-5}\,\frac{kg}{m\cdot s} }[/tex]

[tex]Re = 14616.136[/tex] (which demonstrates the reasonability of the supposition of turbulent flow)

[tex]Pr = \frac{c_{p}\cdot \mu}{k}[/tex]

[tex]Pr = \frac{(2.010\,\frac{kJ}{kg\cdot ^{\textdegree}C} )\cdot (1.227\times 10^{-5}\,\frac{kg}{m\cdot s} )}{0.0251\times 10^{-3}\,\frac{kW}{m\cdot ^{\textdegree}C} }[/tex]

[tex]Pr = 0.983[/tex]

The Nusselt number is:

[tex]Nu_{D} = 0.023\cdot (14616.136)^{0.8}\cdot (0.983)^{0.4}[/tex]

[tex]Nu_{D} = 49.047[/tex]

The Nusselt number has the following definition:

[tex]Nu_{D} = \frac{h\cdot D}{k}[/tex]

The heat transfer coefficient is:

[tex]h = \frac{Nu_{D}\cdot k}{D}[/tex]

[tex]h = \frac{(49.047)\cdot (0.0251\times 10^{-3}\,\frac{kW}{m\cdot ^{\textdegree}C})}{0.05\,m }[/tex]

[tex]h = 24.621\,\frac{W}{m^{2}\cdot ^{\textdegree}C}[/tex]

The convection is the dominant heat transfer mechanism, then:

[tex]\dot Q = (24.621\,\frac{W}{m^{2}\cdot ^{\textdegree}C} )\cdot [\pi\cdot (0.05\,m)\cdot (1\,m) ]\cdot (200^{\textdegree}C-100^{\textdegree}C)[/tex]

[tex]\dot Q \approx 381.091\,W[/tex]