Answer:
the airspeed indicated by the pitot-tube driven airspeed indicator is 91.23m/s
Explanation:
Pitot tube
[tex]U = \sqrt{\frac{(p_t - p_s)2}{d} }[/tex]
U = velocity(m/s)
[tex]p_t[/tex]= stagnation pressure (pa)
[tex]p_s[/tex]= static pressure (pa)
d = fluid density(kg/m³)
[tex]p_t = p_a_t_m + \frac{1}{2} dv^2[/tex]
v = true velocity
= 101325 + 1/2(1.225)(25)²
[tex]p_t = 101,707.8125pa[/tex]
[tex]p_s = 96,610pa[/tex]
d = 1.225kg/m³
[tex]U = \sqrt{\frac{2(101,707.8125 - 96,610)}{1.225} } \\\\U = 91.23m/s[/tex]
the airspeed indicated by the pitot-tube driven airspeed indicator is 91.23m/s