Respuesta :

The measure of angle A is 42°

Explanation:

Given that ABCD is a quadrilateral.

The measures of angles are [tex]\angle A=x+5[/tex], [tex]\angle B= 2x[/tex] and [tex]\angle D=3x-5[/tex]

We need to determine the measure of angle A

The value of x:

Since, we know that the opposite angles of a quadrilateral add up to 180°

Thus, we have,

[tex]\angle B+\angle D=180^{\circ}[/tex]

Substituting the values, we get,

[tex]2x+3x-5=180^{\circ}[/tex]

      [tex]5x-5=180[/tex]

            [tex]5x=185[/tex]

             [tex]x=37[/tex]

Thus, the value of x is 37

Measure of [tex]\angle A[/tex]:

The measure of angle A can be determined by substituting [tex]x=37[/tex] in [tex]\angle A=x+5[/tex], we get,

[tex]\angle A=37+5[/tex]

[tex]\angle A=42^{\circ}[/tex]

Thus, the measure of angle A is 42°