Answer:
5833.33
Explanation:
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Number of revolutions
[tex]\omega_i[/tex] = Initial angular speed = 0
t = Time taken = 2 s
Final angular speed
[tex]\omega_f=\dfrac{350000}{60}=5833.33\ rps[/tex]
From the equation of rotational motion we have
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\dfrac{5833.33-0}{2}\\\Rightarrow \alpha=2916.665\ rev/s^2[/tex]
[tex]\theta=\omega_it+\dfrac{1}{2}\alpha t^2\\\Rightarrow \theta=0\times t+\dfrac{1}{2}\times 2916.665\times 2^2\\\Rightarrow \theta=5833.33\ rev[/tex]
The number of revolutions is 5833.33