Trigonometry
Objective: Use trigonometry functions to find the area of triangles.
In ΔABC, AB=19, AC=24, and in m< Δ=65*. Find the area of ΔABC to the nearest tenth of a square unit.

Respuesta :

The area of the triangle ABC is 207.5 square units.

Explanation:

The measurements of the sides of the triangle are [tex]AB=19[/tex], [tex]AC=24[/tex] and [tex]m\angle A=65^{\circ}[/tex]

We need to determine the area of the triangle ABC.

Area of the triangle:

The area of the triangle can be determined using the formula,

[tex]{Area}=\frac{1}{2} b c \sin A[/tex]

where [tex]b=19[/tex], [tex]c=24[/tex] and [tex]m\angle A=65^{\circ}[/tex]

Substituting these values in the above formula, we get,

[tex]{Area}=\frac{1}{2}(19)(24) \sin 65^{\circ}[/tex]

Simplifying the values, we get,

[tex]{Area}=\frac{1}{2}(456) (0.91)[/tex]

[tex]{Area}=\frac{1}{2}(414.96)[/tex]

[tex]{Area}=207.48[/tex]

Rounding off to the nearest tenth, we get,

[tex]{Area}=207.5[/tex]

Thus, the area of the triangle ABC is 207.5 square units.

Answer:

206.6 units²

Step-by-step explanation:

Area = ½ × AB × AC × sin(A)

= ½ × 19 × 24 × sin(65)

= 206.6381754444