Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the specified axis. y = 32 − x2, y = x2; about x = 4

Respuesta :

Answer:

Required volume is [tex]\frac{4864\pi}{3}[/tex] unit.

Step-by-step explanation:

Given equations of curves,

[tex]y=32-x^2[/tex], [tex]y=x^2[/tex]

substitute second in first we will get,

[tex]x^2=36-x^2\implies x^2=16\implies x=\pm 4[/tex]

When [tex]x=4, y=16[/tex] and [tex]x=-4, y=16[/tex]. Thus both curves intersect at the points (4,16),(-4,16). And thus [tex]-4<x<4[/tex].

Considering width of the representative rectangle as [tex]\Delta x[/tex] which is parallel to x-axis because of considering cylindrical shell. Therefore volume of the shell is given by,

[tex]V_{Shell}=(\textit{Length of box})\times (\textit{Width of box})\times (\textit{Thikness of box})[/tex]

Now,

Length of generating box=Length of [tex]\Delta x[/tex] from line x=4(axis of revolution)=circumference of the shell=(4-x)

Width of box=[tex](36-x^2)-x^2[/tex]

Hence,

[tex]V_{Shell}[/tex]

[tex]=\int_{-4}^{4}2\pi (4-x)(36-2x^2)dx[/tex]

[tex]=2\pi\int_{-4}^{4}(144-36x-8x^2+2x^3)dx[/tex]

[tex]=2\pi\{144\big[x\big]_{-4}^{4}-18\big[x^2\big]_{-4}^{4}-\frac{8}{3}\big[x^3\big]_{-4}^{4}+\frac{1}{2}\big[x^4\big]_{-4}^{4}\}[/tex]

[tex]=\frac{4864\pi}{3}[/tex]

which is required volume of generating area.