Answer:
35870474.30504 m
Explanation:
Given that,
r = Distance from the surface
T = Time period = 24 h
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
m = Mass of the Earth = 5.98 × 10²⁴ kg
Radius of Earth = 6.38 × 10⁶ m
The gravitational force will balance the centripetal force
[tex]\dfrac{GMm}{R^2}=m\dfrac{v^2}{R}\\\Rightarrow v=\sqrt{\dfrac{GM}{R}}T=\dfrac{2\pi r}{v}\\\Rightarrow T=\dfrac{2\pi r}{\sqrt{\dfrac{GM}{r}}}[/tex]
From Kepler's law we have relation
[tex]T^2=\dfrac{4\pi^2r^3}{GM}\\\Rightarrow r^3=\dfrac{T^2GM}{4\pi^2}\\\Rightarrow r=\left(\dfrac{(24\times 3600)^2\times 6.67\times 10^{-11}\times 5.98\times 10^{24}}{4\pi^2}\right)^{\dfrac{1}{3}}\\\Rightarrow r=42250474.30504\ m[/tex]
Distance from the center of the Earth would be
[tex]42250474.30504-6.38\times 10^6\\[/tex]
= 35870474.30504 m