Respuesta :
Answer:
electric potential, V = -q(a²- b²)/8π∈₀r³
Explanation:
Question (in proper order)
Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings
consider the attached diagram below
the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below
Va = q/4π∈₀ [1/(a² + b²)¹/²]
[tex]Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }[/tex]
Also
the electric potential at point p, distance r from the center of the inner charged ring with radius b is
[tex]Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }[/tex]
Sum of the potential at point p is
V = Va + Vb
that is
[tex]V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }[/tex]
[tex]V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }[/tex]
[tex]V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }][/tex]
the expression below can be written as the equivalent
[tex]\frac{1}{(a^{2} + r^{2} )^{1/2} } = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }[/tex]
likewise,
[tex]\frac{1}{(b^{2} + r^{2} )^{1/2} } = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }[/tex]
hence,
[tex]V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }][/tex]
1/r is common to both equation
hence, we have it out and joined to the 4π∈₀ denominator that is outside
[tex]V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }][/tex]
by reciprocal rule
1/a² = a⁻²
[tex]V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}][/tex]
by binomial expansion of fractional powers
where [tex](1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...[/tex]
if we expand the expression we have the equivalent as shown
[tex]{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )[/tex]
also,
[tex]{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )[/tex]
the above equation becomes
[tex]V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )][/tex]
[tex]V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }][/tex]
[tex]V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }][/tex]
[tex]V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )[/tex]
[tex]V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )[/tex]
Answer
[tex]V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }[/tex]
OR
[tex]V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }[/tex]
