Answer:
The overall equilibrium constant K in terms of the equilibrium constants [tex]K_1\& K_2[/tex]:
[tex]K=K_1\times K_2[/tex]
Explanation:
[tex]CH_4(g) H_2O(g)\rightleftharpoons CO(g)+3H_2(g)[/tex]
Equilibrium constant of reaction :
[tex]K_1=\frac{[CO][H_2]^3}{[CH_4][H_2O]}[/tex]
[tex]CO(g) +H_2O(g)\rightleftharpoons CO_2(g) + H_2(g)[/tex]
Equilibrium constant of reaction :
[tex]K_2=\frac{[CO_2][H_2]}{[CO][H_2O]}[/tex]
The net reaction is:
[tex] CH_4(g)+2H_2O(g)\rightleftharpoons CO_2(g)+4H_2(g) [/tex]
Equilibrium constant of reaction :
[tex]K=\frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}[/tex]
[tex]K=\frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}\times \frac{[CO]}{[CO]}[/tex]
Rearranging the equation :
[tex]K=\frac{[CO][H_2]^3}{[CH_4][H_2O]}\times \frac{[CO_2][H_2]}{[CO][H_2O]}[/tex]
[tex]K=K_1\times K_2[/tex]
The overall equilibrium constant K in terms of the equilibrium constants [tex]K_1\& K_2[/tex]:
[tex]K=K_1\times K_2[/tex]