Respuesta :

Answer:

[tex]0\cdot \:y+\left(-0\cdot \:y\right)=0[/tex]  the  statement shows the inverse property of addition as the sum of a number and its inverse is zero.

Step-by-step explanation:

As we know that Inverse Property of Addition states if you add any number to its opposite, the result will be zero.

For example, 13 + (-13) = 0 shows that -13 is the additive inverse of 13.

In other words, the sum of a number and its inverse is zero.

Now checking from the available options,

[tex]0y+\left(-0y\right)[/tex]

[tex]\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a[/tex]

[tex]=0\cdot \:y-0\cdot \:y[/tex]

[tex]\mathrm{Add\:similar\:elements:}\:0\cdot \:y-0\cdot \:y=0[/tex]

[tex]=0[/tex]

Thus,

[tex]0\cdot \:y+\left(-0\cdot \:y\right)=0[/tex]

Therefore, [tex]0\cdot \:y+\left(-0\cdot \:y\right)=0[/tex]  the  statement shows the inverse property of addition as the sum of a number and its inverse is zero.