Respuesta :

Answer:

Δ QRS ≈ Δ QST ≈ Δ SRT 3rd answer

Step-by-step explanation:

From the given figure

In Δ QRS

∵ m∠S = 90°

∵ m∠S = m∠QST + m∠RST

m∠QST + m∠RST = 90° ⇒ (1)

- Use the fact the sum of the measures of the interior angles

   of a Δ is 180°

∴ m∠Q + m∠S + m∠R = 180°

∵ m∠S = 90

∴ m∠Q + 90° + m∠R = 180°

- Subtract 90 from both sides

m∠Q + m∠R = 90° ⇒ (2)

In Δ QST

∵ m∠QTS = 90°

- By using the fact above

m∠Q + m∠QST = 90 ⇒ (3)

- From (1) and (3)

∴ m∠QST + m∠RST = m∠Q + m∠QST

- Subtract m∠QST from both sides

m∠RST = m∠Q

In Δ SRT

∵ m∠STR = 90°

- By using the fact above

m∠R + m∠RST = 90 ⇒ (4)

- From (1) and (4)

∴ m∠QST + m∠RST = m∠R + m∠RST

- Subtract m∠RST from both sides

m∠QST = m∠R

In Δs QRS and QST

∵ m∠S = m∠QTS ⇒ right angles

∵ m∠R = m∠QST ⇒ proved

∵ ∠Q is a common angle in the two Δs

Δ QRS ≈ Δ QST ⇒ AAA postulate of similarity

In Δs QRS and SRT

∵ m∠S = m∠STR ⇒ right angles

∵ m∠Q = m∠RST ⇒ proved

∵ ∠R is a common angle in the two Δs

Δ QRS ≈ Δ SRT ⇒ AAA postulate of similarity

If two triangles are similar to one triangle, then the 3 triangles are similar

∵ Δ QRS ≈ Δ QST

∵ Δ QRS ≈ Δ SRT

Δ QRS ≈ Δ QST ≈ Δ SRT