The sum of the digits of a 2-digit number is 11. If the digits are reversed, the number formed is 45 more than the original number. Find the original number. If x is the ten's digit and y is the one's digit, the original number is 10x+y. the number with reversed digits is 10y+x.

Respuesta :

The original number is 38

Explanation:

Let the sum of the digits of a 2 digit number is 11.

If the digits are reversed, the number formed is 45 more than the original number.

Let x and y be the two numbers and [tex]x+y=11[/tex]

Let the original number be [tex]10x+y[/tex]

Let the reversed number be [tex]10y+8[/tex]

We need to determine the original number.

Original number:

We need to determine the original number [tex]10x+y[/tex]

Thus, we have,

[tex]x+y=11[/tex] -----(1)

[tex](10x+y)+45=10y+x[/tex] --------(2)

Solving the equation (2), we get,

[tex]10x+y+45-10y-x=0[/tex]

                       [tex]9x-9y=-45[/tex]

                      [tex]9(x-y)=-45[/tex]

                          [tex]x-y=-5[/tex] --------(3)

Adding the equations (1) and (3), we get,

[tex]2x=6[/tex]

 [tex]x=3[/tex]

Thus, the value of x is 3

Substituting [tex]x=3[/tex] in equation (1), we get,

[tex]3+y=11[/tex]

     [tex]y=8[/tex]

Thus, the value of y is 8.

The equation of the original number is [tex]10x+y[/tex]

Substituting the value of x and y, we get,

Original number = [tex]10(3)+8\implies 30+8=38[/tex]

Thus, the original number is 38.

Answer:shoo ion kno

Step-by-step explanation: