Answer:
1788.9 MPa
Explanation:
The magnitude of the maximum stress (σ) can be calculated usign the following equation:
[tex] \sigma = 2\sigma_{0} \sqrt{\frac{a}{\rho}} [/tex]
Where:
ρ: is the radius of curvature = 2.5x10⁻⁴ mm (0.9843x10⁻⁵ in)
σ₀: is the tensile stress = 100x10⁶ Pa (14500 psi)
2a: is the crack length = 4x10⁻² mm (1.575x10⁻³ in)
Hence, the maximum stress (σ) is:
[tex]\sigma = 2*100\cdot 10^{6} Pa \sqrt{\frac{(4 \cdot 10^{-2} mm)/2}{2.5 \cdot 10^{-4} mm}} = 1.79 \cdot 10^{6} Pa = 1788.9 MPa[/tex]
Therefore, the magnitude of the maximum stress is 1788.9 MPa.
I hope it helps you!