Answer:
D) 1.04 Btu/s from the liquid to the surroundings.
Explanation:
Given that:
flow rate (m) = 2 lb/s
liquid specific enthalpy at the inlet ([tex]h_{1}=40.09[/tex] Btu/lb)
liquid specific enthalpy at the exit ([tex]h_{2}=40.94[/tex] Btu/lb)
initial elevation ([tex]z_1=0ft[/tex])
final elevation ([tex]z_2=100ft[/tex])
acceleration due to gravity (g) = 32.174 ft/s²
[tex]W_{cv}[/tex] = 3 Btu/s
The energy balance equation is given as:
[tex]Q_{cv}-W{cv}+m[(h_1-h_2)+(\frac{V_1^2-V_2^2}{2})+g(z_1-z_2)]=0[/tex]
Since kinetic energy effects are negligible, the equation becomes:
[tex]Q_{cv}-W{cv}+m[(h_1-h_2)+g(z_1-z_2)]=0[/tex]
Substituting values:
[tex]Q_{cv}-(-3)+2[(40.09-40.94)+\frac{32.174(0-100)}{778*32.174} ]=0\\Q_{cv}+3+2[-0.85-0.1285 ]=0\\Q_{cv}+3+2(-0.9785)=0\\Q_{cv}+3-1.957=0\\Q_{cv}+1.04=0\\Q_{cv}=-1.04\\[/tex]
The heat transfer rate is 1.04 Btu/s from the liquid to the surroundings.