Respuesta :
Answer:
The answer is 0.4490Mpa
Explanation:
Given :
P in direction of 001 , P = 1.1MPa
slip  plane  =  111, slip plane normal direction of 111,
slip direction = 101
[tex]T_{R}[/tex] = δcosФcosλ
= (001 * 101) = 1 = [tex]\sqrt{2}[/tex]cosλ
(111 * 001) 1 [tex]\sqrt{3}[/tex]cosФ
= 1.1 MPa * [tex]\frac{1}{\sqrt{2} }[/tex] * [tex]\frac{1}{\sqrt{3} }[/tex]
1.1 Mpa * 1/1.4142 * 1/1.7320
1.1 Mpa * 0.7072 * 0.5773
= 0.4490 MPa
therefore the resolved shear stress = 0.4490MPa
The critical resolved shear stress will be "0.4490 MPa".
Stress and Strain
According to the question,
Tensile stress in direction of 001, P = 1.1 MPa
Slip plane = 111
Slip direction = 101
We know the relation,
→ [tex]T_R[/tex] = δCosΦ Cosλ
By substituting the values,
    = 001 × 101
    = 1
hence,
The critical resolved stress be:
= (111 × 001) × [tex]\frac{1}{\sqrt{2} }[/tex] × [tex]\frac{1}{\sqrt{3} }[/tex]
By putting the values,
= 1.1 × [tex]\frac{1}{1.4142 }[/tex] × [tex]\frac{1}{1.7320}[/tex]
= 1.1× 0.7072 × 0.5773
= 0.4490 MPa
Thus the above approach is correct. Â
Find out more information about stress here:
https://brainly.com/question/7281809