Respuesta :

Given:

GE = f = 4.3

GF = e = x

m∠G = 64° and m∠E = 85°

To find:

The value of x.

Solution:

Triangle sum theorem:

Sum of the adjacent angles in a triangle = 180°

m∠E + m∠F + m∠G = 180°

64° + m∠F + 85° = 180°

149° + m∠F = 180°

Subtract 149° from both sides, we get

m∠F = 31°

Using sine formula:

[tex]$\frac{e}{\sin E} =\frac{f}{\sin F}[/tex]

[tex]$\frac{x }{\sin 85^\circ} =\frac{4.3}{\sin 64^\circ}[/tex]

[tex]$\frac{x }{0.99} =\frac{4.3}{0.9}[/tex]

Multiply by 0.99 on both sides.

[tex]$\frac{x }{0.99}\times 0.99 =\frac{4.3}{0.9} \times 0.99[/tex]

[tex]x = 4.73[/tex]

[tex]x = 4.7[/tex] (nearest tenth)

The value of x is 4.7 units.