Answer:
The striped ball has a final velocity of 6.93 m/s
Explanation:
The initial velocity of the white ball = 8 m/s
The initial velocity of the striped ball = 0 m/s
let the mass of the ball = m
Momentum = mass * velocity
Initial momentum of the white ball = 8m kgm/s.............(1)
Initial momentum of the strip ball = 0 kgm/s...................(2)
After the collision:
let the final velocity of the white ball be [tex]v_{w}[/tex]
and the final velocity of the strip ball be [tex]v_{s}[/tex]
The final momentum can be resolved in the x and y directions
[tex]P_{xf} = mv_{s} cos30 + mv_{w} cos60[/tex].....................(3)
[tex]P_{yf} = mv_{s} sin30 + mv_{y} sin60[/tex]......................(4)
From the conservation of momentum:
Final momentum = Initial momentum
that is, equating (2) and (4)
[tex]mv_{s} sin30 + mv_{w} sin60 = 0\\0.5v_{s} + \frac{\sqrt{3} }{2} v_{w} = 0\\v_{s} = \sqrt{3} v_{w}\\[/tex]
[tex]v_{w} = v_{s}/\sqrt{3}[/tex]....................(5)
Equating (1) and (3) and inserting (5)
[tex]mv_{s} cos30 + mv_{w} cos60 = 8m\\\frac{\sqrt{3} }{2} v_{s} + \frac{v_{w} }{2} = 8\\\sqrt{3} v_{s} +v_{w} = 16\\\sqrt{3} v_{s} + \frac{v_{s} }{\sqrt{3} } = 16\\3 v_{s} + v_{s} = 16\sqrt{3} \\4 v_{s} = 16\sqrt{3}\\ v_{s} = 4\sqrt{3}\\ v_{s} = 6.93 m/s[/tex]