Respuesta :

Answer:

[tex]r= \frac{ |c - lg - fm| }{ \sqrt{ {l}^{2} + {m}^{2} } } [/tex]

Step-by-step explanation:

The given circle has equation

[tex] {x}^{2} + {y}^{2} + 2gx + 2fy + c = 0[/tex]

This circle has centre (-g,-f).

For the line

[tex]lx + my + n = 0[/tex]

to be a tangent to this circle, the perpendicular distance from the center to this line must be equal to the radius of the circle.

This is given by:

[tex]d = \frac{ |ax + by + c| }{ \sqrt{ {a}^{2} + {b}^{2} } } [/tex]

We substitute the center and radius to get:

[tex]r=\frac{ |l \times - g + m \times - f+ c| }{ \sqrt{ {l}^{2} + {m}^{2} } } [/tex]

We simplify to get;

[tex]r= \frac{ |c - lg - fm| }{ \sqrt{ {l}^{2} + {m}^{2} } } [/tex]