Answer:
(a) Frequency will be equal to [tex]1.718\times 10^{11}s^{-1}[/tex]
(b) Wavelength will be equal to [tex]21.4\mu m[/tex]
Explanation:
Velocity of light [tex]=3\times 10^8m/sec[/tex]
(A) We have given wavelength of light [tex]\lambda =194\mu m=194\times 10^{-6}m[/tex]
We have to find frequency corresponding to this wavelength
We know that velocity of light is equal to [tex]v=\lambda f[/tex]
[tex]f=\frac{v}{\lambda }=\frac{3\times 10^8}{194\times 10^{-6}}=1.718\times 10^{11}Hz[/tex][tex]=1.718\times 10^{11}s^{-1}[/tex]
(b) We have given frequency of vibration [tex]f=1.40\times 10^{13}s^{-1}[/tex]
We have to find wavelength corresponding to this frequency
We know that velocity of light is equal to [tex]v=\lambda f[/tex]
[tex]\lambda =\frac{v}{f}=\frac{3\times 10^8}{1.40\times 10^{13}}=2.14\times 10^{-5}m=21.4\mu m[/tex]