Respuesta :
Answer:
t=4
Step-by-step explanation:
The given logarithmic equation is:
[tex] \ log(t - 3) = \ log(17 - 4t) [/tex]
We want to solve for,
We take antilogarithm to get:
[tex]t - 3 = 17 - 4t[/tex]
Combine similar terms to get:
[tex]t + 4t = 17 + 3[/tex]
Simplify to obtain:
[tex]5t = 20[/tex]
Divide both sides by 5
[tex]t = \frac{20}{5} = 4[/tex]
Answer:
[tex]\mathrm{The\:solution\:is}[/tex]:
[tex]t=4[/tex]
Step-by-step explanation:
Given the expression
[tex]log\left(t-3\right)\:=\:log\left(17-4t\right)[/tex]
[tex]\mathrm{Apply\:log\:rule:\:\:If}\:\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\:\mathrm{then}\:f\left(x\right)=g\left(x\right)[/tex]
[tex]t-3=17-4t[/tex]
[tex]\mathrm{Add\:}3\mathrm{\:to\:both\:sides}[/tex]
[tex]t-3+3=17-4t+3[/tex]
[tex]t=-4t+20[/tex]
[tex]\mathrm{Add\:}4t\mathrm{\:to\:both\:sides}[/tex]
[tex]t+4t=-4t+20+4t[/tex]
[tex]5t=20[/tex]
[tex]\mathrm{Divide\:both\:sides\:by\:}5[/tex]
[tex]\frac{5t}{5}=\frac{20}{5}[/tex]
[tex]t=4[/tex]
Therefore, [tex]\mathrm{the\:solution\:is}[/tex]:
[tex]t=4[/tex]