Respuesta :

Answer:

t=4

Step-by-step explanation:

The given logarithmic equation is:

[tex] \ log(t - 3) = \ log(17 - 4t) [/tex]

We want to solve for,

We take antilogarithm to get:

[tex]t - 3 = 17 - 4t[/tex]

Combine similar terms to get:

[tex]t + 4t = 17 + 3[/tex]

Simplify to obtain:

[tex]5t = 20[/tex]

Divide both sides by 5

[tex]t = \frac{20}{5} = 4[/tex]

Answer:

[tex]\mathrm{The\:solution\:is}[/tex]:

[tex]t=4[/tex]

Step-by-step explanation:

Given the expression

[tex]log\left(t-3\right)\:=\:log\left(17-4t\right)[/tex]

[tex]\mathrm{Apply\:log\:rule:\:\:If}\:\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\:\mathrm{then}\:f\left(x\right)=g\left(x\right)[/tex]

[tex]t-3=17-4t[/tex]

[tex]\mathrm{Add\:}3\mathrm{\:to\:both\:sides}[/tex]

[tex]t-3+3=17-4t+3[/tex]

[tex]t=-4t+20[/tex]

[tex]\mathrm{Add\:}4t\mathrm{\:to\:both\:sides}[/tex]

[tex]t+4t=-4t+20+4t[/tex]

[tex]5t=20[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}5[/tex]

[tex]\frac{5t}{5}=\frac{20}{5}[/tex]

[tex]t=4[/tex]

Therefore, [tex]\mathrm{the\:solution\:is}[/tex]:

[tex]t=4[/tex]