Answer:
[tex] P_m_i_n = 442KPA [/tex]
Explanation:
We are given:
m = 1.06Kg
[tex] T_H = 1.2T_L[/tex]
T = 22kj
Therefore we need to find coefficient performance or the cycle
[tex] COP_R = \frac {1}{(T_R/T_l) -1} [/tex]
[tex] = \frac {1 }{1.2-1} [/tex]
= 5
For the amount of heat absorbed:
[tex] Q_l = COP_R Wm [/tex]
= 5 Ă 22 = 110KJ
For the amount of heat rejected:
[tex] Q_H = Q_L + W_m [/tex]
= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= [tex] = \frac{132}{1.06} [/tex]
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
[tex] T_L = \frac{T_H}{1.2} [/tex];
[tex] T_L = \frac{342.5}{1.2} [/tex]
= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at [tex]T_L[/tex] = 12.4°c we have 442KPa