Triangle ABC has coordinates A (-2, -2), B (1, -3), and C (2, 0). What is the perimeter of the triangle? *You do not have to give units. Give you answer to the nearest tenth if needed* *

Respuesta :

Perimeter of triangle ABC is 10.8 units.

Solution:

Given data:

A(-2, -2), B(1, -3) and C(2, 0)

Distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Distance between AB:

[tex]d=\sqrt{(1-(-2))^2+(-3 -(-2))^2}[/tex]

[tex]d=\sqrt{(1+2)^2+(-3 +2)^2}[/tex]

[tex]d=\sqrt{3^2+(-1)^2}[/tex]

[tex]d=\sqrt{9+1}[/tex]

[tex]d=\sqrt{10}[/tex] units

Distance between BC:

[tex]d=\sqrt{(2-1)^2+(0 -(-3))^2}[/tex]

[tex]d=\sqrt{(1)^2+(3)^2}[/tex]

[tex]d=\sqrt{1+9}[/tex]

[tex]d=\sqrt{10}[/tex] units

Distance between CA:

[tex]d=\sqrt{(2-(-2))^2+(0 -(-2))^2}[/tex]

[tex]d=\sqrt{(2+2)^2+(0+2)^2}[/tex]

[tex]d=\sqrt{4^2+2^2}[/tex]

[tex]d=\sqrt{20}[/tex]

[tex]d=2\sqrt{5}[/tex] units

Perimeter = [tex]\sqrt{10}+\sqrt{10}+2\sqrt{5}[/tex]

                [tex]=2\sqrt{10}+2\sqrt{5}[/tex]

                = 10.8 units

Perimeter of triangle ABC is 10.8 units.