Respuesta :

Answer:

(0,5), (2,4), (4,3), (6,2), (8,1), (10,0), (12,-1), (14,-2), (16,-3), (18,-4), and (20,-5)

Step-by-step explanation:

The given linear equation is :

[tex] \frac{1}{2} x + y = 5[/tex]

Or

[tex]y = - \frac{1}{2} x + 5[/tex]

Any ordered pair that satisfies this equation is a solution.

When x=0,

[tex]y = - \frac{1}{2} \times 0 + 5 = 5[/tex]

(0,5) is a solution

When x=2,

[tex]y = - \frac{1}{2} \times 2+ 5 = 4[/tex]

(2,4) is a solution.

When x=4,

[tex]y = - \frac{1}{2} \times 4+ 5 = 3[/tex]

(4,3) is a solution;

When x=6:

[tex]y = - \frac{1}{2} \times 6+ 5 = 2[/tex]

(6,2).

When x=8,

[tex]y = - \frac{1}{2} \times 8 + 5 = 1[/tex]

Another solution is (8,1)

When x=10,

[tex]y = - \frac{1}{2} \times 10 + 5 = 0[/tex]

(5,0) is a solution

When x=12,

[tex]y = - \frac{1}{2} \times 12+ 5 = - 1[/tex]

(12,-1) is a solution.

When x=14,

[tex]y = - \frac{1}{2} \times 14+ 5 = - 2[/tex]

When x=16, we get:

[tex]y = - \frac{1}{2} \times 16 + 5 = - 3[/tex]

When x=18, we get:

[tex]y = - \frac{1}{2} \times 18+ 5 = - 4[/tex]