Find ten solutions to the linear equation to the linear equation 1/2x+y=5

Answer:
(0,5), (2,4), (4,3), (6,2), (8,1), (10,0), (12,-1), (14,-2), (16,-3), (18,-4), and (20,-5)
Step-by-step explanation:
The given linear equation is :
[tex] \frac{1}{2} x + y = 5[/tex]
Or
[tex]y = - \frac{1}{2} x + 5[/tex]
Any ordered pair that satisfies this equation is a solution.
When x=0,
[tex]y = - \frac{1}{2} \times 0 + 5 = 5[/tex]
(0,5) is a solution
When x=2,
[tex]y = - \frac{1}{2} \times 2+ 5 = 4[/tex]
(2,4) is a solution.
When x=4,
[tex]y = - \frac{1}{2} \times 4+ 5 = 3[/tex]
(4,3) is a solution;
When x=6:
[tex]y = - \frac{1}{2} \times 6+ 5 = 2[/tex]
(6,2).
When x=8,
[tex]y = - \frac{1}{2} \times 8 + 5 = 1[/tex]
Another solution is (8,1)
When x=10,
[tex]y = - \frac{1}{2} \times 10 + 5 = 0[/tex]
(5,0) is a solution
When x=12,
[tex]y = - \frac{1}{2} \times 12+ 5 = - 1[/tex]
(12,-1) is a solution.
When x=14,
[tex]y = - \frac{1}{2} \times 14+ 5 = - 2[/tex]
When x=16, we get:
[tex]y = - \frac{1}{2} \times 16 + 5 = - 3[/tex]
When x=18, we get:
[tex]y = - \frac{1}{2} \times 18+ 5 = - 4[/tex]