simplification of [tex](6 + 5s^{2}) - (9s^{5} - 2 - 3s^{2})[/tex] is [tex]s^2(8-9s^3) +(8)[/tex] .
Step-by-step explanation:
Here we have , to simplify (6 + 5s^{2}) - (9s^{5} - 2 - 3s^{2} or , [tex](6 + 5s^{2}) - (9s^{5} - 2 - 3s^{2})[/tex]:
⇒ [tex](6 + 5s^{2}) - (9s^{5} - 2 - 3s^{2})[/tex]
Simplifying [tex]- (9s^{5} - 2 - 3s^{2})[/tex] :
⇒ [tex]6 + 5s^{2} - 9s^{5} +2 + 3s^{2}[/tex]
Grouping same terms together :
⇒ [tex]- 9s^{5} + (5s^{2} + 3s^{2}) +( 6+2)[/tex]
⇒ [tex]- 9s^{5} + (8s^{2}) +(8)[/tex]
⇒ [tex]8s^2-9s^5 +(8)[/tex]
Taking [tex]s^2[/tex] common we get:
⇒ [tex]s^2(8-9s^3) +(8)[/tex]
Therefore , simplification of [tex](6 + 5s^{2}) - (9s^{5} - 2 - 3s^{2})[/tex] is [tex]s^2(8-9s^3) +(8)[/tex] .