Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. (Enter your answers as a comma-separated list.) f ( x ) = cos 3 x , [ π / 12 , 7 π / 12 ]

Respuesta :

Answer:

The number c=[tex]\frac{\pi}{2}[/tex] satisfies conclusion of Roller's theorem.

Step-by-step explanation:

Given function is,

[tex]f(x)=\cos 3x[/tex] which is,

(1) continuous on the closed interval [tex]\Big[\frac{\pi}{12},\frac{7\pi}{12}\Big][/tex]. Since,

[tex]\lim_{x\to \frac{\pi}{12}}f(x)=\frac{1}{\sqrt{2}}=f(\frac{\pi}{12})[/tex] and,

[tex]\lim_limits_{x\to \frac{7\pi}{12}}f(x)=\frac{1}{\sqrt{2}}=f(\frac{7\pi}{12})[/tex]

(2) derivable in the open interval [tex]\Big[\frac{\pi}{12},\frac{7\pi}{12}\Big][/tex] because of continuity.

(3) [tex]f(\frac{\pi}{12})=\frac{1}{\sqrt{2}}=f(\frac{7\pi}{12})[/tex]

Hence all conditions of Rollr's theorem satisfied, so there exist at least one value c, where [tex]\frac{\pi}{12}<c<\frac{7\pi}{12}[/tex] such that,

[tex]f'(c)=0\implies -3\sin 3c=0\implies 3c=n\pi\impliesc=\frac{\pi}{3}n[/tex] where n is an integer.

When,

n=1, c=[tex]\frac{\pi}{3}\in(\frac{\pi}{12},\frac{7\pi}{12})[/tex]

n=2, c=[tex]\frac{2\pi}{3}\notin(\frac{\pi}{12},\frac{7\pi}{12})[/tex]

Similarly for other values of n, c lies outside of the given interval.

Hence c=[tex]\frac{\pi}{2}[/tex] satisfies conclusion of Roller's theorem.