Answer:
8.1345°
Explanation:
We apply [tex]\sum F_x=0[/tex] to the wire to obtain:
[tex]\sum F_x=-F_m+mg\ sin \theta=0[/tex]
#The magnitude of the magnetic force acting on the wire is given by:
[tex]F_m=IlB\ sin \phi, \phi=90\textdegree\\\\F_m=IlB[/tex]
#Substitute for [tex]F_m[/tex] to obtain:
[tex]-IlB+mg\ sin \ \theta=0\ \ \ \ \ \ \ \ ...i[/tex]
Solve for [tex]\theta[/tex]:
[tex]\theta=sin^{-1}[\frac{IlB}{mg}][/tex]
We the substitute the numerical values to calculate the equilibrium angular displacement:
[tex]\theta= sin^{-1}[\frac{0.2A\times0.52m\times 0.040T}{0.003\ kg\times9.8m/s^2}]\\\\=8.1345\textdegree[/tex]
Hence, the equilibrium angular displacement of the wire from vertical if the horizontal magnetic field is 8.1345°