Water is leaking out of an inverted conical tank at a rate of 12,000 cm3/min at the same time that water is being pumped into the tank at a constant rate. The tank has height 6 m and the diameter at the top is 4 m. If the water level is rising at a rate of 20 cm/min when the height of the water is 2 m, find the rate at which water is being pumped into the tank.

Respuesta :

Answer:

[tex]291111.1cm^3/min[/tex]

Step-by-step explanation:

We are given that

[tex]\frac{dV}{dt}_{out}=12000 cm^3/min[/tex]

Height of tank,h=6 m

Diameter of top,d=4 m

Radius,r=[tex]\frac{d}{2}=\frac{4}{2}=2 m[/tex]

[tex]\frac{dh}{dt}=20 cm/min[/tex]

[tex]\frac{r}{h}=\frac{2}{6}=\frac{1}{3}[/tex]

[tex]r=\frac{1}{3} h[/tex]

We have to find rate at which water is being pumped into the tank.

Volume of conical ,V=[tex]\frac{1}{3}\pi r^2 h[/tex]

[tex]V=\frac{1}{3}\pi(\frac{1}{3} h)^2h=\frac{1}{27}\pi h^3[/tex]

[tex]\frac{dV}{dt}=\frac{1}{9}\pi h^2(\frac{dh}{dt})[/tex]

h=2 m=200 cm

1m=100 cm

[tex]\frac{dV}{dt}_{in}-12000=\frac{1}{9}\pi(200)^2\times 20[/tex]

[tex]\frac{dV}{dt}_{in}=12000+\frac{1}{9}\pi (40000)\times 20[/tex]

[tex]\frac{dV}{dt}_{in}=291111.1cm^3/min[/tex]