Respuesta :

The given equation is [tex]\sqrt{2} \cos x+1=0[/tex]

We need to determine the solution of the equation.

Solution:

The solution of the equation can be determined by solving the equation for x.

Let us subtract both sides of the equation by 1.

Thus, we get;

[tex]\sqrt{2} \cos x=-1[/tex]

Dividing both sides by [tex]\sqrt{2}[/tex], we get;

[tex]\cos x=-\frac{1}{\sqrt{2}}[/tex]

Rationalizing the equation, we have;

[tex]\cos x=-\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2} }[/tex]

Simplifying, we get,

[tex]\cos x=-\frac{\sqrt{2}}{2}[/tex]

The general solutions for [tex]\cos x=-\frac{\sqrt{2}}{2}[/tex] is [tex]x=\frac{3 \pi}{4}+2 \pi n \ and \ x=\frac{5 \pi}{4}+2 \pi n[/tex]

Therefore, the solutions of the equation are [tex]x=\frac{3 \pi}{4}+2 \pi n[/tex] and [tex]x=\frac{5 \pi}{4}+2 \pi n[/tex]