A circle has a sector with area \dfrac{1}{2}\pi 2 1 ​ πstart fraction, 1, divided by, 2, end fraction, pi and central angle of \purple{\dfrac{1}{9}\pi} 9 1 ​ πstart color #9d38bd, start fraction, 1, divided by, 9, end fraction, pi, end color #9d38bd radians . What is the area of the circle?

Respuesta :

Answer:

Area of circle = 9π

Step-by-step explanation:

Area of sector = [tex]\frac{1}{2} \pi[/tex]

Its central angle = [tex]\frac{1}{9}\pi \text{ radians}[/tex]

[tex]\text{Area of sector} = \dfrac{\text{Central angle}}{2\pi} \times\text{Area of circle}[/tex]

[tex]\text{Area of circle} = \text{Area of sector}\times\dfrac{2\pi}{\text{Central angle}}[/tex]

[tex]A = \dfrac{1}{2}\pi\times\dfrac{2\pi}{\frac{1}{9}\pi} = 9\pi[/tex]