A block of mass 0.490 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is vA = 13.4 m/s, and the block experiences an average frictional force of 7.00 N while sliding up the track. What is x? and what is the speed of the block if it reaches the top?

Respuesta :

Answer:

The value of x is  [tex]x = 0.1955\ m[/tex]

The value of the velocity at the top is  [tex]v_{top} = 2.25 \ m/s[/tex]

Explanation:

The diagram of this process is on the first uploaded image

From the question we are told that

     The mass of the block is [tex]m_b = 0.490kg[/tex]

      The distance of compression is [tex]x[/tex]

      The force constant is [tex]k = 450 N/m[/tex]

      The radius of the circular track is [tex]R =1.00m[/tex]

       The speed at the bottom of the track is [tex]v_A = 13.4 \ m/s[/tex]

        The frictional force experienced is [tex]F_f = 7.00 \ N[/tex]

Now looking at this process we see that the potential energy of the spring is been transformed into the kinetic energy  of the block . So,

          [tex]PE \ of \ spring = KE \ of \ block[/tex]

mathematically i.e

        [tex]\frac{1}{2}k x^2 = \frac{1}{2} m_bv^2_A[/tex]

       [tex]0.5 * 450 * x^2 = 0.5 * 0.490 * 13.4^2[/tex]

Making x the subject of the formula

           [tex]x = \sqrt{\frac{0.5 * 0.490 * 13.4^2}{ 0.5 * 450} }[/tex]

              [tex]= 0.1955\ m[/tex]

The average workdone by friction is  [tex]W_f = F_f * \pi[/tex]

Here [tex]\pi is \ the\ net\ displacement[/tex]

                                         [tex]W_f = 7 * 3.142[/tex]

                                               [tex]= 21.99 J[/tex]

The kinetic energy at the bottom is

                                     [tex]KE = \frac{1}{2} * 0.490 * 13.4^2[/tex]

                                            [tex]= 43.99 \ N[/tex]

The potential energy gained at the top of the circle is

                              [tex]PE = m_bgh[/tex]

Here h  is the height which is equal to d(diameter)  = 2r = 2 × 1 = 2 m and

g is acceleration due to gravity [tex]= 9.8m/s^2[/tex]

Now substituting values

                       [tex]PE = 0.490 * 9.8 *2[/tex]

                             [tex]=9.604 J[/tex]

Since energy is can not be created nor destroyed but transformed  according to first law of thermodynamics

                  [tex]KE_{at \bottom} = PE _ {\ at \ top } + W_f + KE_{\ at \ top}[/tex]

                      [tex]43.99 = 9.604 +21.99 + [\frac{1}{2} m_b * v_{top} ^2][/tex]

                        [tex]12.369= [2.45* v_{top} ^2][/tex]

                            [tex]v_{top} =\sqrt{\frac{12.369}{2.45} }[/tex]

                                  [tex]= 2.25 \ m/s[/tex]

                                     

                                 

Ver imagen okpalawalter8