if a/b and c/d are rational expressions, then what is a/b•c/d = a/b•c/b

Given:
[tex]\frac{A}{B} \text { and } \frac{C}{D}[/tex] are rational expressions.
[tex]$\frac{A}{B} \cdot \frac{C}{D}=\frac{A \cdot D}{B \cdot C}[/tex]
To find:
The given statement is true or false.
Solution:
[tex]\frac{A}{B} \text { and } \frac{C}{D}[/tex] are rational expressions.
[tex]$\frac{A}{B} \cdot \frac{C}{D}[/tex]
Multiply the numerators and multiply the denominators.
[tex]$\frac{A}{B} \cdot \frac{C}{D}=\frac{A \cdot C}{B \cdot D}[/tex]
It is the correct answer.
Therefore, [tex]\frac{A}{B} \cdot \frac{C}{D}=\frac{A \cdot D}{B \cdot C}[/tex] is false.