Which of these strategies would eliminate a variable in the system of equations? { − x + 6 y = 8 7 x − y = − 2 ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ ​ −x+6y=8 7x−y=−2 ​ Choose all answers that apply:

Respuesta :

Answer:

The required solution is [tex]x=\frac{98}{41}[/tex]  and [tex]y =\frac{8}{123}[/tex].

Step-by-step explanation:

Given equations are

-x+6y = -2.......(1)

[tex]\frac87x-y=-2[/tex].......(2)

First we have to equate the coefficient of y or x. Here we equate the coefficient of y . So equation (2) multiply by 6.

Then the equation (2) becomes

[tex]\frac{8\times 6}{7}x-6y=-2\times6[/tex]

[tex]\Rightarrow \frac{48}{7}x-6y=-12[/tex]........(3)

Since the signs of y are is opposite, so we adding (1) and (2).

[tex](-x+6y)+ \frac{48}{7}x-6y=-2-12[/tex]

[tex]\Rightarrow -x+\frac{48}{7}x=-14[/tex]

[tex]\Rightarrow \frac{-7x+48x}{7}=-14[/tex]

[tex]\Rightarrow \frac{41x}{7}=-14[/tex]

[tex]\Rightarrow x=\frac{-14\times 7}{41}[/tex]

[tex]\Rightarrow x=\frac{98}{41}[/tex]

Putting the value of equation (1)

[tex]-\frac{98}{41}+6y=-2[/tex]

[tex]\Rightarrow 6y =-2+\frac{98}{41}[/tex]

[tex]\Rightarrow 6y =\frac{-82+98}{41}[/tex]

[tex]\Rightarrow y =\frac{16}{41\times 6}[/tex]

[tex]\Rightarrow y =\frac{8}{123}[/tex]

The required solution is [tex]x=\frac{98}{41}[/tex]  and [tex]y =\frac{8}{123}[/tex]