The following questions refer to the gas-phase decomposition of ethylene chloride. [tex]C_2H_5Cl \rightarrow products[/tex]Experiment shows that the decomposition is first order. The following data show kinetics information for this reaction: Time (s): 1.0, 2.0ln [C₂H₅Cl] (M): -1.625, -1.735 What was the initial concentration of the ethylene chloride?

Respuesta :

Answer : The initial concentration of the ethylene chloride is, 0.219 M

Explanation :

First we have to calculate the rate constant.

The expression used for first order kinetics is:

[tex]K=\frac{1}{t_2-t_1}\times \ln (\frac{[C_2H_5Cl]_{initial}}{[C_2H_5Cl]_{final}})[/tex]

[tex]K=\frac{1}{t_2-t_1}\times (\ln [C_2H_5Cl]_{initial}-\ln [C_2H_5Cl]_{final})[/tex]

Given:

[tex]t_2[/tex] = final time = 2.0 s

[tex]t_1[/tex] = initial  time = 1.0 s

[tex]\ln [C_2H_5Cl]_{initial}[/tex] = initial concentration = -1.625 M

[tex]\ln [C_2H_5Cl]_{final}[/tex] = final concentration = -1.735 M

Now put all the given values in the above expression, we get:

[tex]K=\frac{1}{2.0-1.0}\times [(-1.625)-(-1.735)][/tex]

[tex]K=0.11s^{-1}[/tex]

The value of rate constant is, 0.11 s⁻¹

Now we have to calculate the initial concentration of the ethylene chloride.

At t = 1, [tex]\ln [C_2H_5Cl]_{final}[/tex] = -1.625 M

At t = 0, [tex]\ln [C_2H_5Cl]_{initial}[/tex] = ?

[tex]K=\frac{1}{t_2-t_1}\times (\ln [C_2H_5Cl]_{initial}-\ln [C_2H_5Cl]_{final})[/tex]

[tex]0.11=\frac{1}{1-0}\times (\ln [C_2H_5Cl]_{initial}-(-1.625)][/tex]

[tex]\ln [C_2H_5Cl]_{initial}=-1.515[/tex]

[tex][C_2H_5Cl]_{initial}=0.219M[/tex]

Thus, the initial concentration of the ethylene chloride is, 0.219 M