Answer:
[tex]W=6\sqrt{2} \ J[/tex]
Explanation:
Given:
expression of force:
[tex]F=4x+2xy[/tex]
initial position of the object, [tex]x_o=0;~~~y_o=0[/tex]
position after the first move, [tex]x'=1\ m;~~~y=1\ m[/tex]
final position after the last move, [tex]x=1\ m;~~~y=1\ m[/tex]
As we know that work is defined when the force is applied and the body moves in the direction of force.
The total displacement of the object:
[tex]s=\sqrt{2}[/tex]
Now the force from initial point to the final point in the direction of displacement :
[tex]F_{net}=F-F_o[/tex]
[tex]F_{net}=(4+2)-(0+0)[/tex]
[tex]F_{net}=6\ N[/tex]
Now work done:
[tex]W=F.s\\[/tex]
[tex]W=6\times \sqrt{2}[/tex]
[tex]W=6\sqrt{2} \ J[/tex]